Development of a Computer-Aided Application for Analyzing ECG Signals and Detection of Cardiac Arrhythmia Using Back Propagation Neural Network - Part I: Model Development
نویسندگان
چکیده
Electrocardiogram (ECG) is a graphic recording of the electrical activity produced by the heart. The accuracy of any electrocardiogram waveform extraction plays a vital role in helping a better diagnosis of any heart related illnesses. We present a computer-aided application model for detection of cardiac arrhythmia in ECG signal, which consists of signal pre-processing and detection of the ECG signal components adapting Pan-Tompkins and Hamilton-Tompkins algorithms; feature extraction from the detected QRS complexes, and classification of the beats extracted from QRS complexes using Back Propagation Neural Network (BPNN). The application model was developed for ECG signal classification under ‘Normal’ or ‘Abnormal’ heartbeats to detect cardiac arrhythmia in the ECG signal. The model was trained with standard arrhythmia database of Massachusetts Institute of Technology Division of Health Science and Technology/Beth Israel Hospital (MIT-BIH), and taking into account the Association for the Advance of Medical Instrumentation (AAMI) standard. The performance of the developed application model for classification of ECG signals was investigated using the MIT-BIH database. The accuracy of detection and extraction of the signal components and features (based only on the MIT-BIH database used) shows that the developed application model can be employed for the detection of heart diseases in patients.
منابع مشابه
Development of a Computer-Aided Application for Analyzing ECG Signals and Detection of Cardiac Arrhythmia Using Back Propagation Neural Network - Part II: GUI Development
Electrocardiogram (ECG) is a graphic recording of the electrical activity produced by the heart. We have developed a computer-aided application model for classification of ECG signals for detection of cardiac arrhythmia. The model is based on some existing algorithms in literature which were adapted to suit our application. The developed model involves ECG signal pre-processing, extraction of s...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملتشخیص آریتمی انقباضات زودرس بطنی در سیگنال الکتریکی قلب با استفاده ازترکیب طبقهبندها
Cardiovascular diseases are the most dangerous diseases and one of the biggest causes of fatality all over the world. One of the most common cardiac arrhythmias which has been considered by physicians is premature ventricular contraction (PVC) arrhythmia. Detecting this type of arrhythmia due to its abundance of all ages, is particularly important. ECG signal recording is a non-invasive, popula...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in ord...
متن کاملDevelopment of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...
متن کامل